Capabilities of a C++ class without committing to a particular implementation of that class.
The C++ interfaces are implemented using abstract classes
A class is made abstract by declaring at least one of its functions as pure virtual function. A pure virtual function is specified by placing "= 0" in its declaration as follows:
Thus, if a subclass of an ABC needs to be instantiated, it has to implement each of the virtual functions, which means that it supports the interface declared by the ABC. Failure to override a pure virtual function in a derived class, then attempting to instantiate objects of that class, is a compilation error.
Classes that can be used to instantiate objects are called concrete classes.
Total Rectangle area: 35
Total Triangle area: 17
The C++ interfaces are implemented using abstract classes
A class is made abstract by declaring at least one of its functions as pure virtual function. A pure virtual function is specified by placing "= 0" in its declaration as follows:
class Shape
{
public:
// pure virtual function providing interface framework.
virtual int getArea() = 0;
void setWidth(int w)
{
width = w;
}
void setHeight(int h)
{
height = h;
}
protected:
int width;
int height;
};
The purpose of an abstract class is to provide an appropriate base class from which other classes can inherit. Abstract classes cannot be used to instantiate objects and serves only as an interface. Attempting to instantiate an object of an abstract class causes a compilation error.Thus, if a subclass of an ABC needs to be instantiated, it has to implement each of the virtual functions, which means that it supports the interface declared by the ABC. Failure to override a pure virtual function in a derived class, then attempting to instantiate objects of that class, is a compilation error.
Classes that can be used to instantiate objects are called concrete classes.
// Derived classes class Rectangle: public Shape { public: int getArea() { return (width * height); } }; class Triangle: public Shape { public: int getArea() { return (width * height)/2; } }; int main(void) { Rectangle Rect; Triangle Tri; Rect.setWidth(5); Rect.setHeight(7); // Print the area of the object. cout << "Total Rectangle area: " << Rect.getArea() << endl; Tri.setWidth(5); Tri.setHeight(7); // Print the area of the object. cout << "Total Triangle area: " << Tri.getArea() << endl; return 0; }When the above code is compiled and executed, it produces the following result:
Total Rectangle area: 35
Total Triangle area: 17