Search element in a matrix with all rows and columns in sorted order

Given a matrix containing unique numbers in which all rows and columns are in sorted order.
And You have to search an element output its location row,column number .
If no such element the just print ”-1 -1”.

Example:
5  5                               //size of matrix
 -10   -5   -3    4     9     //matrix
-6     -2     0    5    10
-4     -1     1    6    12
  2      3     7    8    13
100  120 130 140 150


3   // number of elements to be search
0   //element to be search
-2 //element to be search
170 //element to be search

Output:

1 2  // location of 0
1 1 // location of -2
-1 -1 //location of 170


Solution:
We can use normal brute force solution which can give O(m*n) time complexity.

By using binary search we can further reduce the complexity by(m*log(n))

But here is the simplest and optimal solution which takes O(n+m) complexity which we can say if n=m then O(2n)=O(n) or similar order if n!=m

#include <iostream>
#include <stdio.h>
#include <string>
#include <map>
#include <vector>
#include <algorithm>
#include <limits.h>
#include <math.h>
using namespace std;
int A[1009][1009];
int main()
{
      int n,m;
      scanf("%d%d",&n,&m);
      for(int i=0;i<n;i++)
      {
            for(int j=0;j<m;j++)
            {
                  scanf("%d",&A[i][j]);
            }
      }
      int t;
      cin>>t;
      while(t--)
      {
            int p;
            cin>>p;
            int i=0,j=m-1;
            bool f=false;
             while(i<n && j>=0)
            {
                  if(A[i][j]==p)
                  {
                        cout<<i<<" "<<j<<endl;
                        f=true;
                        break;
                  }
                  else if(A[i][j]>p)
                  {
                        j--;
                  }
                  else if(A[i][j]<p)
                  {
                        i++;
                  }     
            }
            if(f==false) cout<<"-1 -1"<<endl;
      }
      return 0;
}


Article and code by Dheeraj